Theatre of Science IGCSE Physics: Solids Liquids and Gases 1: Density and Volume
 Let's play: "Which box is more

Today's lesson will cover the following spec points (Pearson and Cambridge):

Know and use the relationship between density, mass and volume

Practical: investigate density using direct measurements of mass and volume

Describe the use of rulers and measuring cylinders to find a length or a volume

Define density as mass per unit volume; recall and use the equation $\rho=\mathrm{m} / \mathrm{V}$

Describe how to determine the density of a liquid, of a regularly shaped solid and of an irregularly shaped solid which sinks in a liquid (volume by displacement), including appropriate calculations

Determine whether an object floats based on density data

Determine whether one liquid will float on another liquid based on density data given that the liquids do not mix

You only have as many (regular) Lego bricks as you like, and a cocktail stick / similar tiny stick.

Try and get Lego bricks to sink in water!

Density = mass / volume
usually usually usually measured in... measured in kg measured in
$\mathrm{kg} / \mathrm{m}^{3}$ "kilograms per metre cubed"
(Though obviously $\mathrm{g} / \mathrm{cm}^{3}$ might be more sensible if you're dealing with small amounts. Just make sure you write the units with your answer!)
densely packed?!" (Which box has the most sweets per cm^{3})

1) This cube of aluminium has a mass of 21.6 g . What is the density of aluminium?

Density = mass volume

4) Tough one!

Give your answer for the density of aluminium in kilograms per metre cubed.
2) A 20 mL tablespoon of golden syrup has a mass of 30 g . What is its density?
3) Water has a density of $1 \mathrm{~g} / \mathrm{cm}^{3}$. What is the mass of $75 \mathrm{~cm}^{3}$ of water?

5) How would you find the volume of this bronze statue?!

Theatre of Science IGCSE Physics: Solids Liquids and Gases 2: Pressure!

Today's lesson will cover the following spec points (Pearson and Cambridge):

Define pressure as force per unit area; recall and use the equation $p=F A$

Describe how pressure varies with force and area in the context of everyday examples

Which of these are an example of a low pressure being useful, which are high pressure being useful, which are both and which are neither?!

A bulldozer's caterpillar 'wheels'.

```
Useful: LP HP
    Both Neither
```


Snow shoes

```
Useful: LP HP
    Both Neither \begin{tabular}{c} 
Useful: LP HP \\
Both Neither \\
\hline
\end{tabular}
```


A shark's teeth

The base of a highchair being wide

```
Useful: LP HP
```

Useful: LP HP
Both Neither

```


Ice skates
\begin{tabular}{|c|}
\hline Useful: LP HP \\
Both \\
\hline
\end{tabular}

A woodpecker's beak
\begin{tabular}{|c|}
\hline Useful: LP \\
Both \\
Both
\end{tabular}


A drawing pin
\begin{tabular}{|c|}
\hline Useful: LP HP \\
Both Neither \\
\hline
\end{tabular}

\section*{Questions}
1) A force of 40 N acts over \(5 \mathrm{~m}^{2}\). What is the pressure?
2) A force of 30 N exerts 10 Pa of pressure. What area is it acting over?
3) A \(2 m^{2}\). table feels a pressure of 16 Pa . How much force is pushing down on the table?
4) A truck weighs 400000 N . The surface area of each tyre is \(1 \mathrm{~m}^{2}\). The truck has six wheels. How much pressure does the truck exert on the ground?
5) A shoe has an area of \(0.05 \mathrm{~m}^{2}\). It exerts 800 Pa of pressure on the ground. What is the weight of the owner (pictured!), in newtons?
6) An ice skate is 0.5 cm wide and 30 cm long. A skater weighs 850 N . Newtons. How much pressure do they exert on the ice?

My two year old niece has a mass of 12 kg and a foot roughly \(5 \mathrm{~cm}(0.05 \mathrm{~m})\) wide by \(11 \mathrm{~cm}(0.11 \mathrm{~m})\) long. My husband has a mass of 75 kg and a foot roughly \(12 \mathrm{~cm}(0.12 \mathrm{~m})\) wide by \(30 \mathrm{~cm}(0.30 \mathrm{~m})\) long.


Which one will cause the most pain if they step on my foot?!

How much pressure would my husband apply to the ground if he walked on the Moon. Assume a space suit weighs 50 Kg !

\section*{Theatre of Science IGCSE Physics: Solids Liquids and Gases 3: Brownian Motion!}

Today's lesson will cover the following spec points:

Know that the random motion of microscopic particles in a suspension is evidence for the kinetic particle model of matter

Describe and explain this motion (sometimes known as Brownian motion) in terms of random collisions between the microscopic particles in a suspension and the particles of the gas or liquid

Know that microscopic particles may be moved by collisions with light fastmoving molecules and correctly use the terms atoms or molecules as distinct from microscopic particles
1) Match the... thing to the describing word. Use each word as many times as you like.

NOT TO SCALE!


Pollen Grain


\section*{Particle}

Electron
Atom Proton
Molecule
2) Which of the above are microscopic? Write a small 'M' next to the ones you reckon.
3) Underline all the mistakes you can find in this paragraph and have a go at correcting them in the margins. (And tick all the bits you agree with!

Robert Brownian studied particles of pollen in water. He noticed they moved in random zig zag patterns. Sometimes they moved in curved paths. It turns out this motion is caused
by microscopic water atoms colliding with the pollen!
What Robert saw proved once and for all that the particles in
fluids move quickly and randomly

\section*{Theatre of Science IGCSE Physics: Solids Liquids and Gases 4: Pressure in Liquids!}

Today's lesson will cover the following spec points:

Describe, qualitatively, how the pressure beneath the surface of a liquid changes with depth and density of the liquid

Recall and use the equation for the change in pressure beneath the surface of a liquid \(\Delta p=\rho g \Delta h\)

\section*{To join in bring:}

Small wine glass or small regular glass if not! Something tall filled \(3 / 4\) full with water that the glass will fit inside. Tall saucepan / bowl / top of a smoothie maker etc.

Toilet roll!
Calculator.

Which of these diagrams shows what would happen if you poked three identical holes in a water bottle?
(Can you believe some people say physics is boring?! The suspense is killing you right?!)


Why do you think that?


How do you think the diagram would change if we used this bottle?

You are planning a journey to the bottom of a strange planet's ocean. The pressure on you will depend on... (circle all that you think apply)

The ocean's density
The ocean's mass
How deep you go
The planet's atmosphere
The volume of the ocean
The planet's acceleration due to gravity (g).
Your weight

\section*{Questions!}

Wilomena is taking a gap year and has gone exploring around a kitchen. She dives to the bottom of a bottle of golden syrup. If the syrup is 25 cm deep, with a density of 1400 \(\mathrm{kg} / \mathrm{m}^{3}\), how much pressure acts on her?


The bottom of a boat is on the surface of the ocean, experiencing a pressure of 500 Pa. Weight is added and the boat moves down so the bottom of the boat is 2 m below the surface. If the density of seawater is \(1000 \mathrm{~kg} / \mathrm{m}^{3}\), what is the new pressure acting on the bottom of the ship?


\section*{Theatre of Science IGCSE Physics: Solids Liquids and Gases 5: Changes of State}

Today's lesson will cover the following spec points:

Know the terms for the changes in state between solids, liquids and gases (gas to solid and solid to gas transfers are not required)

\section*{From Pearson:}

Explain why heating a system will change the energy stored within the system and raise its temperature or produce changes of state
Describe the changes that occur when a solid melts to form a liquid, and when a liquid evaporates or boils to form a gas
Practical: obtain a temperaturetime graph to show the constant temperature during a change of state

Describe melting and boiling in terms of energy input without a change in temperature

Know the melting and boiling temperatures for water at standard atmospheric pressure

Describe condensation and solidification in terms of particles


While you're waiting for the lesson to start! Fill in these gaps with whatever you think. Wild guesses if necessary!

A solid block of frozen water is heated until it becomes a gas. Sketch a graph to show what you think would happen to the temperature of the water over time

Put your guess here:

1) SKETCH the answer (don't worry about perfection!)
2) Put a wavy line under the bits of the graph where melting or boiling are happening and label them
3) Draw crosses to show where the melting \& boiling points are and label them.
4) Do the same as 3) but for the freezing and condensing points!


Why is the ice frozen?
Put a piece of string on some ice.

What does the salt do to the bonds between the water particles?

Sprinkle on some salt and wait one minute.

What does this do to the freezing point of the water? (And the melting point?)

What happens?

Why does some water freeze around the string?

\section*{Theatre of Science IGCSE Physics: Solids Liquids and Gases 6: Evaporation!}

To join in bring: Two (ideally identical) cups of hot water, bowl.

Today's lesson will cover the following spec points:

Describe evaporation in terms of the escape of more energetic particles from the surface of a liquid Know that evaporation causes cooling of a liquid

Describe the differences between boiling and evaporation

Describe how temperature, surface area and air
movement over a surface affect evaporation

Explain the cooling of an object in contact with an evaporating liquid

\section*{Questions to intrigue and annoy you. Answer with your best guess.}

When you boil water it bubbles.


What you think:

Answer:

A water molecule is two atoms of hydrogen bonded to one atom of oxygen.


What you think:

Answer:

Thank you for contributing £5 a month towards my wages! It's the ONLY reason this is my job! Search 'Theatre of Science kofi' to receive nice things and all my gratitude.

\section*{Which of these would make the water evaporate faster?} (For the ones that would, explain WHY in a couple of words).

Moving water from the shade into the Sun


Blowing hot air over the surface of the water

Repeatedly pouring water from one glass to another


Gently heating the bottom of the glass of water


Emptying half the water out


\section*{Which of these sentences describe boiling, which evaporating, which both, and which neither?!}


Only happens at the surface of a liquid

\section*{Bonds between atoms are broken}

A liquid cools as it happens

Bonds between molecules are broken

Bubbles of gas form when it happens

\section*{Theatre of Science IGCSE Physics: Solids Liquids and Gases 7: Specific Heat Capacity! \\ To join in bring: \\ Calculator, cup of water, metal spoon. \\ (Specific Heat Capacity of water \(=4200 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}\) ) (Specific Heat Capacity of aluminium \(=880 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}\) ) \\ How much energy do you need to raise the temperature of...}

Today's lesson will cover the following spec points:
Define specific heat capacity as the energy required per unit mass per unit temperature increase; recall and use the equation for specific heat capacity.

Describe experiments to measure the specific heat capacity of a solid and a liquid

\section*{Rearrange the equation to make} \(\mathrm{m}, \mathrm{c}\) and \(\Delta \theta\) the subject.

\section*{\(\Delta \mathrm{E}=\mathrm{mc} \Delta \theta\)}
\(\mathrm{m}=\)
\(\Delta \theta=\)
\(\mathrm{C}=\)
1) 2 kg of water by \(1^{\circ} \mathrm{C}\) ?
2) 5 kg of water by \(0.8^{\circ} \mathrm{C}\) ?
3) 300 g of water by \(4^{\circ} \mathrm{C}\) ?
4) How much energy does a 3 kg block of aluminium lose when it cools from \(200^{\circ} \mathrm{C}\) to \(50^{\circ} \mathrm{C}\) ?
5) A pan contains 0.5 kg of water at \(6^{\circ} \mathrm{C} .3150 \mathrm{~J}\) of thermal energy shifts to the water. What is its temperature afterwards?


\section*{Experiment to find the Specific Het Capacity of Aluminium}
1. Take the mass of the 1 kg aluminium block using a balance (Why?)
2. Put the immersion heater into the block.
3. Put the thermometer into the other hole in the block and record the temperature.
(Spot any problem with this? Can you think of a solution?)
4. Wrap the block in insulating material. (Why?)
5. Connect an ammeter (which measures current) and voltmeter (which measures voltage) to the immersion heater, connect the heater to a power supply, and turn it on.
6. Allow the aluminium block to heat up for ten minutes. Record the ammeter and voltmeter readings.
7. When you switch the heater off the block will get slightly hotter; record the final temperature.
8. You have the current, voltage and time, so you can work out how much energy was supplied the block. And you have the temperature change. And you have the mass of the block. So you can work out the specific heat capacity of the aluminium!

\section*{Theatre of Science IGCSE Physics: Solids Liquids and Gases 7: Specific Heat Capacity! \\ To join in bring: \\ Calculator, cup of water, metal spoon. \\ (Specific Heat Capacity of water \(=4200 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}\) ) (Specific Heat Capacity of aluminium \(=880 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}\) ) \\ How much energy do you need to raise the temperature of...}

Today's lesson will cover the following spec points:
Define specific heat capacity as the energy required per unit mass per unit temperature increase; recall and use the equation for specific heat capacity.

Describe experiments to measure the specific heat capacity of a solid and a liquid

\section*{Rearrange the equation to make} \(\mathrm{m}, \mathrm{c}\) and \(\Delta \theta\) the subject.

\section*{\(\Delta \mathrm{E}=\mathrm{mc} \Delta \theta\)}
\(\mathrm{m}=\)
\(\Delta \theta=\)
\(\mathrm{C}=\)
1) 2 kg of water by \(1^{\circ} \mathrm{C}\) ?
2) 5 kg of water by \(0.8^{\circ} \mathrm{C}\) ?
3) 300 g of water by \(4^{\circ} \mathrm{C}\) ?
4) How much energy does a 3 kg block of aluminium lose when it cools from \(200^{\circ} \mathrm{C}\) to \(50^{\circ} \mathrm{C}\) ?
5) A pan contains 0.5 kg of water at \(6^{\circ} \mathrm{C} .3150 \mathrm{~J}\) of thermal energy shifts to the water. What is its temperature afterwards?

\section*{Theatre of Science IGCSE Physics: Solids Liquids and Gases 8: The Kelvin Scale!}

Today's lesson will cover the following spec points:

Describe the relationship between the motion of particles and temperature, including the idea that there is a lowest possible temperature \(\left(-273^{\circ} \mathrm{C}\right)\), known as absolute zero, where the particles have least kinetic energy

Convert temperatures between kelvin and degrees Celsius; recall and use the equation \(T(\) in \(K)=\theta\)
\[
\left(\text { in }{ }^{\circ} \mathrm{C}\right)+273
\]

Recall and use the equation \(\mathrm{pV}=\) constant for a fixed mass of gas at constant temperature, including a graphical representation of this relationship

Use the relationship between the pressure and volume of a fixed mass of gas at constant temperature: p1V1 = p2V2


I was trying to teach pressure in the all-ages lesson, and lashed out this slide. What silly mistake have I made?!

\section*{Let's talk about pressure!}

Pressure in liquids and gases is caused by the particles bumping into the sides of the container

To join in bring: Calculator! Bowl of very hot water, bowl of very cold water (iced if you like). Narrow-necked glass bottle (no lid required), small cup warm water, washing up liquid


Can you fill out any/all of the gaps on this number line? I'll give you the equation in a minute.


1 K is the same size division as
In an ideal gas:

\section*{In other, (freaky physics words): \(\mathbf{p}_{1} \mathbf{V}_{\mathbf{1}}=\mathbf{p}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}{ }^{\text {* }}\)}
1) A gas has a volume of \(40 \mathrm{~cm}^{3}\) and a pressure of 10000 Pa . If it is compressed to a volume of \(20 \mathrm{~cm}^{3}\). What is the new pressure?

"There's another equation like this for pressure and temperature; l'll give you some questions in the 'homework' pdf in my Facebook group.
\begin{tabular}{ccc} 
& Permanece constante & Presión \\
Temperatura & Volumen \\
\begin{tabular}{ccc}
\(P_{1} V_{1}\) \\
\hline
\end{tabular}\(=\frac{P_{2} V_{2}}{T}\) & \(\frac{P^{\prime} V_{1}}{T_{1}}=\frac{P^{\prime} V_{2}}{T_{2}}\) & \(\frac{P_{1} V}{T_{1}}=\frac{P_{2} V}{T_{2}}\) \\
Se & Se & Se \\
obtiene & obtiene & obtiene \\
Ley de Boyle & \(\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}\) & Ley de Gay-Lussac \\
\(P_{1} V_{1}=P_{2} V_{2}\) & & \(\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}\)
\end{tabular}

Diagram (in Spanish, but I feel like it's not the words making it confusing anyway?) showing the Ideal Gas Law, and how the Boyle, Charles, and Gay-
Lussac equations come out of it. You need to be able to use the Boyle and the Charles one for an IGCSE exam, but at the time of writing (Jan 2024) they give you it. You don't have to use the equation at the top. Just thought some of you might like to see the details! Image: Dione Murrieta via wikimedia commons. License: https://creativecommons.org/licenses/by/4.0/```

