Theatre of Science Ecosystems 1: Populations, Communities and Species!

What affects ecosystems?
(What affects how plants and animals in an ecosystem interact?)

Experiment: Ecosystem in a jar! You will need wo aras of soil (morei f you itien)

1) "I am going to investigate how \qquad affects the growth of my ecosystem in a jar". (Water? Light? Temperature? Type of soil?)
2) I am going to make sure these factors stay the same:

Hypothesis: (What do you predict will happen?)
Diagram

Method:

3) I am going to measure how many plants appear / the average height of the plants

GCSE Questions!

1) A pond contains marsh frogs, common frogs, pond skaters, dragon flies, and pondweed. What word can be used for all the marsh frogs in the pond?

A: Ecosystem
B: Habitat
C: Population
D: Community
2) Name three abiotic factors that might affect life in the pond.

Thanks for supporting me on Kofi!

Challenging Question!

Theatre of Science Ecosystems 2: Food Chains

To join in bring: Paper, scissors, felt pens

1) What do the arrows on a food chain show?

2) Producer or Consumer?!

Circle your choice.

Producer / Consumer
Bacteria making carbon dioxide gas into sugar

Venus Flytrap

Producer / Consumer

Algae

Producer / Consumer

Producer / Consumer

Producer / Consumer

The Sun

5) What would happen to baleen
 whales if the krill disappeared?
5) What might happen to the emperor penguin population if the elephant seals disappeared?
\qquad
\qquad
\qquad

1) What's the producer in this food web?
2) What do emperor penguins eat? \qquad
3) Name a primary consumer
4) What eats leopard seals?
5) Name a secondary consumer

GCSE Questions!

3) Draw an arrow between the snake and the frog to complete the food web
4) Draw a food chain using five organisms in the food web.
5) Suggest a reason why snakes going extinct might lead to frogs going extinct.

1) Name one producer in this food web.
2) Name one primary consumer in this food web.

I'm entirely funded by people supporting me at
If you're finding these lessons useful, sign up and I'll post you magazines, stickers and rainbow glasses!

Theatre of Science Ecosystems 3: Biomass

Why isn't 100% of the maize's biomass stored in the cow?!
To join in bring: Elastic band / hair bobble, A4 paper, ruler, pens.
Label the cow to show where it goes

1) How many pieces of kelp, sea urchins and otters can you see?
Kelp \qquad Drawing Pyramids
of Biomass
Keep the heights the same

Number of squares is to scale with the amount of biomass

Otters
2) Draw a pyramid of number for them on your paper.
3) Draw a pyramid of biomass on the other side.
4) What's the difference?! Which one do you think is better and why?

GCSE Questions!

2) Give two reasons why the biomass of the snake is less than the biomass of the frog

1) Sketch a pyramid of biomass for the food chain pictured.
2) Which of the following is not excreted from the human body?
a) Sweat
b) Faeces
c) Urea

Theatre of Science Ecosystems 4: Competition!

To join in bring: A green leaf!

1. What do plants need?!

Fill in the gaps yourself first, then listen to me talking about how plants make food and tick / make corrections! (It's good if you make corrections because it means you've learned something! Which is, you know, the point of the lesson).

L \qquad , W \qquad _

C

\qquad , C24 and minerals such as

N \qquad , \mathbf{P} \qquad , M \qquad
2. Plants also need: S \qquad
3. There's something on your list that plants need, but they don't compete for it. Put a star next to it.
4. A restaurant operates from your house every evening. And they use the food in your house to make meals! You can't afford to eat in the restaurant. How do you get dinner?
(List your ideas. You may want to note down what animals use the same technique when we go through them!)

Animals compete for three main things. Can you name them? Each group of pictures is a clue!

 Lion image courtesy of eatcha via Wikimedia Commons!
License: https://creativecommons.org/licenses/by/4.0/deed.en

\qquad

Dino puzzles!

Why there were lots of small carnivorous dinosaurs, and lots of large ones, but hardly any medium sized ones?!

How did different species of enormous plant-eating dinosaurs manage to exist together in the same forest?

Theatre of Science Ecosystems 5: Adaptions!

Bring: Two ice cubes, tbsp of butter/marg, something to wipe your hand with!, paper, red pen, 6 toy bricks / Lego / stock cubes!
Lots of activities before you do a worksheet in this lesson! But you might want to use this page to make some notes on how these animals have adapted to survive in their environments.

Label parts of this snowshoe hare to explain how it is adapted to survive in the Arctic.

(Clues: it's in a cold place, and there are other animals hunting it!)

Puzzles!

Why did a study show holly leaves are more prickly on the bottom 2.5 metres of the trees?

How do snowshoe hares avoid being seen in spring and summer when the snow melts?

Are penguins adapted to live at the South Pole?

Explain yes or no!

Imagine an animal needed to store lots of fat on its body to use for energy, like a polar bear, but it lived in a hot country! Sketch what it might look like!

How many
 \qquad in our field?!

For organisms that stay still or move slowly! We can pick 8 random segments and count how many grains are in each .

Grains in quadrant 1: \qquad

Grains in quadrant 2:
Grains in quadrant 3: \qquad
Grains in quadrant 4: \qquad
Grains in quadrant 5: \qquad
Grains in quadrant 6: \qquad
Grains in quadrant 7: \qquad
Grains in quadrant 8: \qquad Total grains counted \qquad ay. We've counted the There are 32 segments in our tray. We've counted the
grains in 8 of them - a quarter. So times this number by 4 to get an estimate of the total number of grains on the tray.

```
Total on tray is about:
```


How many

\qquad in our field?! rice/dried beans simila calculator, ruler.

The trapping method; for organisms that can move! Take twenty grains and mark them on both sides with a felt pen. This is your first sample. Then put all grains, marked and unmarked, in a bowl.

Take a pinch of grains; count them all, and how many are marked. Record in the table. Put grains back in the bowl. Repeat 10 times! That's your second sample.

Pinch	$\mathbf{1}$	2	3	4	5	6	7	8	9	10
Total grains										
Marked grains										

Count the total numbers of grains you pinched. This is the size of your second sample: S. Count the number of marked grains you pinched. This number is R.
S = \qquad $R=$ \qquad $M=20$ (The number you first marked)

You can estimate how many grains you have in the bowl altogether using the equation $N=(M \times S) / R$.

Total in bowl is about:
You'll have to count them after the lesson to see how accurate your estimates were!

Counting how many species of lichen there are in your area!

How many different species of lichen are around - the lichen's diversity - is a great way to tell how polluted air is. The cleaner the air, the more kinds of lichen. Scientists actually measure air quality using a Lichen Diversity Value!

To measure the lichen diversity in an area, you put quadrats on trees. But there are rules you have to follow...

1) What kind of tree do you put your quadrat on?
a) Trees with trunks over 1 cm wide
b) Trees with trunks over 80 cm wide
c) Trees of any size

2) Lichens need light to grow. What kind of conditions should the tree you measure be in?
a) Light or shade
b) Just light
c) Just shade

3) Do you record ALL species of lichen you find?
a) Leave out species that are hard to identify
b) Leave out species that are hard to find
c) Record all species
d) A and B

